Aug. 21st, 2011
Nicked from dracodraconis
Aug. 21st, 2011 03:33 pm
The new devices can deliver a power density of 100 kW/kgcell, which is 100 times higher than that of commercial Li-ion batteries and 10 times higher than that of supercapacitors. The higher the power density, the faster the rate of energy transfer (resulting in a faster recharge time). In addition, the new cells can store an energy density of 160 Wh/kgcell, which is comparable to commercial Li-ion batteries and 30 times higher than that of conventional supercapacitors. The greater the energy density, the more energy the device can store for the same volume (resulting in a longer driving range for electric vehicles).
“Given the same device weight, the current SMC and Li-ion battery can provide an electric vehicle (EV) with a comparable driving range,” Bor Z. Jang, co-founder of Nanotek Instruments and Angstron Materials, told PhysOrg.com. “Our SMCs, just like the current Li-ion batteries, can be further improved in terms of energy density [and therefore range]. However, in principle, the SMC can be recharged in minutes (possibly less than one minute), as opposed to hours for Li-ion batteries used in current EVs.”